
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Optimization of Fastest Public Transportation Route

Selection in Jakarta Metropolitan Area Using

Uniform Cost Search and A* Algorithm

Hanif Kalyana Aditya - 13523041

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: hanifaditya2304@gmail.com , 13523041@std.stei.itb.ac.id

Abstract— This paper addresses the problem of finding the

fastest route through public transportation networks in the

Jakarta Metropolitan Area (Jabodetabek), which includes

various modes such as KRL, MRT, Trans Jakarta, and LRT. The

complexity of the transportation system and the absence of an

integrated route planning tool often make it difficult for

passengers to identify the most efficient path. To solve this, we

model the transportation system as a weighted directed graph,

where nodes represent stations and edges represent travel

segments with associated time costs.

We implement two well-known graph search algorithms—

Uniform Cost Search (UCS) and A* Search—to find the shortest

travel time between two stations. The A* algorithm utilizes a

heuristic function based on mode-switch penalties to improve

search efficiency. The system allows users to choose both the

algorithm and the start/goal nodes and provides a visualization of

the state space tree formed during the search.

Testing shows that A* consistently reduces the number of

nodes visited compared to UCS, while still producing optimal

results. This demonstrates the potential of informed search in

solving real-world transportation optimization problems.

(Abstract)

Keywords—Public Transportation; Jakarta; Graph; Uniform

Cost Search Algorithm; A* Algorithm

I. INTRODUCTION

Transportation plays a crucial role in the economic and

social activities of urban populations. In the Jakarta

Metropolitan Area (also known as Jabodetabek), the

complexity and density of public transportation networks have

increased significantly with the development of various modes

such as KRL (Commuter Line), MRT, Trans Jakarta, and LRT.

While these systems aim to improve connectivity and

efficiency, users often face difficulties in identifying the fastest

route across different transport modes and operators.

In everyday scenarios, determining the most time-efficient

route is not a trivial task. A traveler may need to transfer

between multiple stations, change modes of transport, or

traverse a non-optimal path due to lack of centralized route

planning. These challenges are essentially computational

problems that can be modeled as a graph traversal problem,

where each station is represented as a node and each route

segment as a weighted edge (with travel time as weight).

This research explores how Uniform Cost Search (UCS)

and A* algorithms can be utilized to solve the route

optimization problem in Jabodetabek's public transportation

network and focused. Both algorithms are widely known in the

field of Graph Theory for solving shortest path problems and in

this context will be used to find the shortest travel-time. UCS

algorithm itself guarantees the optimal solution in terms of total

cost, while A* enhances search efficiency through heuristics.

To make the heuristic admissible yet simple, a condition where

a traveler changes type of transportation to commute is used as

heuristic. The reason for the usage of this heuristic is because

in real-life, travelers need several minutes to switch into

another type transportation.

The scope of this study includes the modeling of public

transportation networks in Jabodetabek as a directed weighted

graph, with sample data representing selected stations or bus

stops and travel times. Besides analyzing the difference

between two algorithms, the objective is to develop a

functional Python program that be able to determine the fastest

route between two stations with visual feedback in the form of

a state space tree.

Through this paper, the demonstration of practical

application of search algorithms is focused on so that it could

be used to solve real-world problems in future alongside

highlighting the difference between uninformed and informed

search strategies in terms of performance and complexity.

II. THEORETICAL FOUNDATION

A. Graph Traversal

Graph traversal refers to the process of visiting nodes in a

graph structure, where the graph is defined as a collection of

vertices (nodes) connected by edges. In the context of route

planning, each node can represent a location (e.g., a station or

stop), and each edge represents a connection or segment of the

route, often associated with a weight such as distance, time, or

mailto:hanifaditya2304@gmail.com
mailto:13523041@std.stei.itb.ac.id

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

cost. The goal of traversal is typically to find an optimal path

from a starting node to a goal node based on some criteria,

such as minimum travel time.

Traversal algorithms can vary depending on whether the

goal is to explore all nodes (e.g., Breadth-First Search) or to

find the shortest path (e.g., Dijkstra's algorithm, UCS, or A*).

In this study, traversal is used to determine the fastest route in

a directed weighted graph where edges represent public

transportation links with travel time as their weight.

B. Informed and Uninformed Search

Search algorithms are generally classified into two
categories: uninformed (blind) and informed (heuristic-based).

• Uninformed search does not have any domain-specific
knowledge or heuristic guidance. It explores the graph
based solely on the information available in the graph
structure. An example is Uniform Cost Search (UCS),
which always expands the node with the lowest
cumulative cost from the start.

• Informed search, on the other hand, leverages
heuristic functions to estimate the cost from a node to
the goal, allowing the algorithm to prioritize more
promising paths. A* is a well-known informed search
algorithm that uses both the actual cost from the start
node and the estimated cost to the goal node to guide
the search more efficiently.

Understanding the distinction between these two types of
search is important when evaluating the trade-offs between
completeness, optimality, and performance.

C. Uniform Cost Search (UCS) Algorithm

Uniform Cost Search or UCS algorithm is one of the route
planning algorithms or route determination without any
additional information about the search destination
(Uninformed Search/Blind Search). The search is done based
on the cost or cost to reach a node in the graph. Cost or cost in
UCS is usually denoted as g(n), where n is a node in the UCS
search graph. In the minimum cost search, the node that has the
lowest cost to reach a point will be generated first.

In the cost determination process, no additional information

is known about the search destination, so this algorithm is

included in Uninformed Search. In this algorithm, the node that

has the lowest cost will be generated first, so the

implementation of this algorithm usually uses Priority Queue,

where the node that has the highest priority will be at the front.

The priority value of this algorithm is the same as the cost, so

the following equation is used.

f(n) = g(n)

where f(n) is the evaluation function that becomes the
priority value of a node and g(n) is the cost value of a node.

D. A* Algorithm

The A* (A-star) algorithm is one of the route planning
algorithms or route determination with additional information
about the search destination (Informed Search). The A*
algorithm is a development of the Uniform Cost Search and
Greedy Best First Search algorithms, with the idea of avoiding
expensive paths or nodes in addition to using heuristic values.
The search is carried out based on the evaluation function (f
(n)) of a node. This evaluation function is the sum of the costs
to reach a node added to the heuristic value of the node to reach
the destination node.

In the A* algorithm, the node with the best evaluation
function value (the smallest in the case of a minimum cost
search) will be generated first. In this algorithm, the node with
the lowest evaluation function value will be generated first, so
the implementation of this algorithm usually uses a Priority
Queue, where the node with the highest priority will be at the
front. The priority value of this algorithm is the same as the
heuristic value of a node, so the following equation is used.

f(n) = g(n) + h(n)

where f(n) is an evaluation function that becomes the
priority value of a node, g(n) is the cost value of a node, and
h(n) is a heuristic value that is an estimate of the distance cost
from node n to the destination node. In the A* algorithm, there
is a concept of admissible heuristics, namely a heuristic
function (h(n)) that is always smaller than the actual cost from
node n to the destination node. If a heuristic function is used in
the search, then A* is guaranteed to produce an optimal
solution.

III. METHODOLOGY

A. Public Transportation Networks

Fig. 3.1 Jakarta’s Integrated Public Tranportation Map

(Source: https://transjakarta.co.id/rute)

To model transportation that system into a computational

problem, we first manually collected actual route and

station/bus stop data from the official websites and publicly

available sources of four major transportation type—Mass

https://transjakarta.co.id/rute

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

function UCS(graph, start, goal) → best_path, best_moda, best_time,
visited_nodes_count, edges_explored
 queue = [(0, [start], [])] # (time, path, moda)
 best_time : infinite float
 best_path, edges_explored, best_moda : List
 visited : dictionary
 visited_nodes_count = 0

 while queue is not empty do
 total_time, path, moda_path = heapq.heappop(queue)
 current = path[-1]
 visited_nodes_count = visited_nodes_count + 1

 if current in visited and total_time >= visited[current]:
 continue
 endif
 visited[current] = total_time

 if current = goal then
 if total_time < best_time then
 best_time = total_time
 best_path = path
 best_moda = moda_path
 endif
 continue
 endif

 for neighbor, time_cost, moda in graph[current]['edges']:
 if neighbor not in path:
 penalty = 5 if moda_path and moda_path[-1] != moda else 0
 heapq.heappush(queue, (total_time + time_cost + penalty, path + [neighbor],
moda_path + [moda]))
 edges_explored.append((current, neighbor))

 return best_path, best_moda, best_time, visited_nodes_count, edges_explored

function euclidean_distance(node, goal, graph):

 x1, y1 = graph[node]['coords']

 x2, y2 = graph[goal]['coords']

 return math.dist((x1, y1), (x2, y2)

function astar(graph, start, goal) → best_path, best_moda, best_time,
visited_nodes_count, edges_explored
 queue = [(0, [start], [])] # (time, path, moda)
 best_time : infinite float
 best_path, edges_explored, best_moda : List
 visited : dictionary
 visited_nodes_count = 0

 while queue:
 f, g, path, moda_path = heapq.heappop(queue)
 current = path[-1]
 print(f"Current atau path[-1]: {current}")
 visited_nodes_count += 1

 if current in visited and g >= visited[current]:
 print(f"current in visited and total_time >= visited[current]: {g} >=
{visited[current]}")
 continue
 visited[current] = g

 if current == goal:
 if g < best_time:
 best_time = g
 best_path = path
 best_moda = moda_path
 continue

 for neighbor, time_cost, moda in graph[current]['edges']:
 if neighbor not in path:
 current_moda = moda_path[-1] if moda_path else None
 penalty = 5 if current_moda and current_moda != moda else 0

 new_g = g + time_cost + penalty
 h = euclidean_distance(neighbor, goal, graph) * 2.5
 f = new_g + h

 heapq.heappush(queue, (f, new_g, path + [neighbor], moda_path + [moda]))
 edges_explored.append((current, neighbor))

 return best_path, best_moda, best_time, visited_nodes_count, edges_explored

Rapid Transit (MRT), Light Rapid Transit (LRT), Trans

Jakarta (busway) and subway (KRL). These sources include

route maps, line information, travel time estimates, and station

names.

The challenge of this problem relies on the complexity and
density of the real-world Jabodetabek’s public transportation
full network. Because of that, only selected routes and stations
or bus stops were used for this implementation. The selected
stations or bus stops are generally major transit hub/point and
representative routes from each transportation mode is
included.

To simplify the system for processing, stations or bus stops
that overlap across different modes (e.g., “Sudirman / Dukuh
Atas”) were grouped into a single node. Similarly, similar
stations like “Blok M” and “ASEAN” were treated as one. This
is because, those two places are actually transit hub which are
close to each other in reality. The network was then modeled as
a directed weighted graph, where each node represents a station
or bus stop, and each edge represents a connection between
two stations or bus stops with an associated travel time and
mode of transportation. This simplification allows us to focus
on computational problems without losing the essence of real-
world complexity. (Table attached)

IV. IMPLEMENTATION

A. Uniform Cost Search Implementation

 The Uniform Cost Search (UCS) algorithm is implemented
to find the shortest path between two stations in the
transportation graph based on total travel time. UCS is a blind
search algorithm that expands the node with the lowest
cumulative cost from the start node. The implementation uses a
priority queue (heapq) where each element is a tuple
containing:

• total_time: the cumulative travel time from the start
node

• path: the list of visited stations so far

• moda_path: the sequence of transportation modes
taken

At each iteration, the node with the least total time is
dequeued and processed. If the goal node is reached and the
path is optimal—total_time lower time than previously found
paths—it is recorded as the best path.

We also calculated a situation if a change in transportation
mode is required between the current and next station, a fixed
penalty of 5 minutes is added. Otherwise, the heuristic returns
0. This encourages the algorithm to prefer paths that avoid
unnecessary transfers between different types of transport. To
prevent revisiting nodes unnecessarily, a visited dictionary is
maintained to store the lowest time found to reach each station.
Additionally, all explored edges are recorded in
edges_explored for visualization purposes.

B. A* Implementation

The A* (A-star) algorithm extends Uniform Cost Search by
incorporating a heuristic function to estimate the remaining
cost from the current node to the goal. This heuristic helps
prioritize nodes that are likely to lead to a faster solution,
making the search more efficient. In this implementation, each
element in the priority queue (queue) is a tuple consisting of:

• f: the total estimated cost (f(n) = g(n) + h(n))

• g: the actual cost from the start node to the current

node

• path: the list of visited stations

• moda_path: the sequence of transportation modes

taken so far

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

A key component of A* is the heuristic function. In this

project, the heuristic is based on distance between live-node or

the neighbor of current node to the goal node or well-known

as eucledian distance.

The algorithm proceeds similarly to UCS. We calculated a

situation if a change in transportation mode is required

between the current and next station, a fixed penalty of 5

minutes is added. Otherwise, the heuristic returns 0. This

encourages the algorithm to prefer paths that avoid

unnecessary transfers between different types of transport.

Besides, for f(n) A* calculates f(n) = g(n) + h(n) for each

neighbor node, and nodes are prioritized based on this

estimated total cost. The visited dictionary ensures that only

the lowest-cost paths to each node are explored, and cycles are

avoided by checking whether the neighbor is already in the

current path.

C. Heuristics Implementation

1) Eucledian Distance

In the A* algorithm implementation, we uses a heuristic

function: Euclidean distance. The purpose of the heuristic is to

provide an informed estimate of the remaining cost from a

node to the goal, thereby guiding the search more efficiently

than uninformed strategies like UCS. To represent spatial

proximity between two nodes, each transportation stop is

assigned a coordinate in a simplified 2D grid system. The

Euclidean distance is calculated using the formula:

Fig. 4.1 Lebak Bulus to Bekasi Barat with UCS

(Source: https://en.wikipedia.org/wiki/Euclidean_distance)

This component helps the algorithm prioritize nodes that

are geographically closer to the goal. Besides this heuristic, we

also combine it with mode-switching penalty so that the route

with a situation if a change in transportation mode is required

between the current and next station will more likely be

skipped.

V. TESTING AND ANALYSIS

A. Testing

We do experiment on several routes that makes travelers to

change transportation mode and the distance between two

places is quite far. The goal is to give illustration how UCS

and A* algorithms affect route selection since A* using

different approach which is eucledian distance as a heuristic.

1) Lebak Bulus to Bekasi Barat

Fig. 5.1 Lebak Bulus to Bekasi Barat

with UCS

Fig. 5.2 Lebak Bulus to Bekasi Barat
with A*

Fig. 5.3 Lebak Bulus to Bekasi Barat with UCS Graph

Fig. 5.4 Lebak Bulus to Bekasi Barat with A* Graph

2) Cikarang to Blok M / ASEAN

Fig. 5.5 Cikarang to Blok M / ASEAN

with UCS

Fig. 5.6 Cikarang to Blok M / ASEAN
with A*

Fig. 5.7 Cikarang to Blok M / ASEAN with UCS Graph

https://en.wikipedia.org/wiki/Euclidean_distance

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Fig. 5.8 Cikarang to Blok M / ASEAN with A* Graph

3) Serpong to Monas

Fig. 5.9 Serpong to Monas with UCS Fig. 5.10 Serpong to Monas with A*

Fig. 5.11 Serpong to Monas with UCS Graph

Fig. 5.12 Serpong to Monas with A* Graph

B. Analysis

From the previous testing part, several routes are being

used as a testcase. We deliberately selected these routes

according to their distance and how complicated it would be if

a traveler gets through it. The goal node of these routes cannot

be accessed directly by one or even two modes of

transportation. Nevertheless, all the things we have done seem

to be quite useless.

In testing, three routes with UCS and A* algorithm

respectively showing exactly same result. From 1) Lebak

Bulus to Bekasi Barat, although traveler needs to change mode

of transportation two times and the travel time is at its best,

both algorithms give with identical result including the path

and its transportation mode, total travel time, visited nodes and

time taken to process this problem. Unexpectedly, the other

two testing give the same pattern and result. All of this could

be possible due to several reasons or hypothesis.

1) Small Graph Scale

In this research, we only use about ~40 stations or bus stops in

order to simplify the actual large scale of Jabodetabek’s public

transportation network. Then, the best or optimal path could

be found without many explorations. Its consequence is both

UCS and A* algorithm will likely explore the same route.

2) Small Value of Euclidean Distance

The value of g(n) is usually on range between 70-100 minutes

whereas the value of h(n) (Euclidean times 1.5) is only about

5-10. This quite large gap makes A* algorithm is not

‘directed’ enough and similar to UCS

3) Dominance of a Single Optimal Route

In many of the tested routes, the structure of the transportation

network strongly favors a single optimal path. This means that

both Uniform Cost Search (UCS) and A* are essentially

"forced" to follow the same route regardless of heuristic

guidance, simply because alternative routes are either

significantly longer or require more mode switches. As a

result, even though A* uses heuristic to prioritize certain

paths, it gives the same solution as UCS due to the natural

dominance of that route within the graph.

4) Mode Switching Penalty Has Limited Influence

Although a fixed penalty is applied when switching

transportation modes, its magnitude (e.g., 5 minutes) is often

not large enough to significantly affect the selection of routes.

Most available paths between distant nodes already involve

one or more mode switches, making the penalty a consistent

factor across alternatives. Consequently, it does not

meaningfully differentiate between paths and has little impact

on the decision-making process of either algorithm.

VI. CONCLUSION

This study aimed to explore the application of graph search

algorithms, particularly Uniform Cost Search (UCS) and A*

search, for optimizing the fastest public transportation routes

within the Jakarta Metropolitan Area. By constructing a

simplified transportation network graph using real-world data

from KRL, MRT, LRT, and Trans Jakarta routes, we

evaluated the effectiveness of both algorithms in terms of

travel time, number of visited nodes, and overall performance.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

The A* algorithm used a heuristic function based on

Euclidean distance between transit points, along with a penalty

for switching transportation modes. However, the

experimental results showed that both UCS and A*

consistently produced the same optimal routes and travel times

across all test cases. In many instances, the number of nodes

visited by A* was also comparable to or greater than that of

UCS.

These findings suggest that in small-scale, structured, and

dominantly linear graphs like the one used in this study, the

advantage of heuristic-based search is diminished. The

network’s limited complexity and the presence of strongly

favored optimal routes made both algorithms showing to the

same solutions.

Nonetheless, this work validates the applicability of both

UCS and A* for route optimization problems and highlights

the critical role of heuristic design and network complexity in

determining algorithmic efficiency.

Future work may involve extending the transportation

graph with higher node density, incorporating real-time traffic

data, or evaluating alternative heuristic functions to better

exploit the advantages of informed search strategies.

GITHUB AND DATA LINK

Github: https://github.com/hnfadtya/MakalahStima_13523041

DataSheet:https://docs.google.com/spreadsheets/d/13nZYXq2
VpAIx09Ud2yISfSEN5PEKpsuK0588862Fle8/edit?gid=0#gid
=0

ACKNOWLEDGMENT

Alhamdulillah and all praise to Allah for His mercy, we are

able to finish “Optimization of Fastest Public Transportation

Route Selection in Jakarta Metropolitan Area Using Uniform

Cost Search and A* Algorithm” paper. Also, my gratitude sent

to my lecturer, Dr. Nur Ulfa Mauladevi, S.T., M.Sc., for her

guidance and patience to provided beneficial and precious

knowledge along this semester. Thank you.

REFERENCES

[1] Munir, Rinaldi. 2025. BFS, DFS, UCS, Greedy Best First

Search. [online] Available at:

<https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/202

4-2025/21-Route-Planning-(2025)-Bagian1.pdf>

[Accessed 23 June 2025 14:56]

[2] Munir, Rinaldi. 2025. BFS, DFS, UCS, Greedy Best First

Search. [online] Available at:

<https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/202

4-2025/22-Route-Planning-(2025)-Bagian2.pdf>

[Accessed 23 June 2025 14:56]

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 24 Juni 2025

Hanif Kalyana Aditya/13523041

https://github.com/hnfadtya/MakalahStima_13523041
https://docs.google.com/spreadsheets/d/13nZYXq2VpAIx09Ud2yISfSEN5PEKpsuK0588862Fle8/edit?gid=0#gid=0
https://docs.google.com/spreadsheets/d/13nZYXq2VpAIx09Ud2yISfSEN5PEKpsuK0588862Fle8/edit?gid=0#gid=0
https://docs.google.com/spreadsheets/d/13nZYXq2VpAIx09Ud2yISfSEN5PEKpsuK0588862Fle8/edit?gid=0#gid=0
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/21-Route-Planning-(2025)-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/21-Route-Planning-(2025)-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/22-Route-Planning-(2025)-Bagian2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/22-Route-Planning-(2025)-Bagian2.pdf

